Product Description
Product Description
A conveyor will always consist of at least 2 pulleys, head pulley and tail pulley, with additional pulleys used depending on the configuration. Standard-duty pulleys are usually adequate for simple applications, but mine-duty and engineered pulleys are also available where heavy-duty pulleys are required.
Different kinds of conveyor pulleys
KONWEYOUR sells conveyor pulleys in all the following sub-categories:
Head pulleys
The head pulley is located at the discharge point of the conveyor. It usually drives the conveyor and often has a larger diameter than other pulleys. For better traction, the head pulley is usually lagged (with either rubber or ceramic lagging material).
Tail and CHINAMFG pulleys
The tail pulley is located at the loading end of the belt. It comes with either a flat face or a slatted profile (wing pulley), which cleans the belt by allowing material to fall between the support members.
Snub pulleys
A snub pulley improves the traction of the drive pulley, by increasing its belt wrap angle.
Drive pulleys
Drive pulleys, which can also be the head pulley, are driven by a motor and power transmission unit to propel the belt and material to the discharge.
Bend pulleys
A bend pulley is used for changing the direction of the belt.
Take-up pulley
A take-up pulley is used to provide the belt with the proper amount of tension. Its position is adjustable.
Product Parameters
Type | Belt width(mm) | Standard Diameter(mm) | Length(mm) |
Drive Pulley | 500 | 500 |
Length of the pulley depends on the belt width of the conveyor |
650 | 500~630 | ||
800 | 630~1000 | ||
1000 | 800~1150 | ||
1200 | 800~1150 | ||
1400 | 1000~1350 | ||
1600 | 1150~1600 | ||
1800 | 1150~1800 | ||
2000 | 1350~2000 | ||
2200 | 1600~2200 | ||
2400 | 1800~2400 | ||
Bend Pully | 500 | 250~500 | |
650 | 250~630 | ||
800 | 250~1000 | ||
1000 | 250~1600 | ||
1200 | 250~1600 | ||
1400 | 315~1600 | ||
1600 | 400~1600 | ||
1800 | 400~1600 | ||
2000 | 500~1600 | ||
2200 | 630~1600 | ||
2400 | 800~1600 |
Packaging & Shipping
Detailed Photos
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Carbon Steel |
---|---|
Surface Treatment: | Baking Paint |
Motor Type: | Frequency Control Motor |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How does the design of a V pulley affect its performance?
The design of a V pulley plays a crucial role in determining its performance characteristics. Here’s an explanation of how different design aspects of a V pulley can affect its performance:
1. Groove Profile:
The groove profile of a V pulley is designed to match the shape of the V-belt used in the power transmission system. The angle and depth of the groove directly influence the grip between the pulley and the belt. An appropriate groove profile ensures a secure and efficient power transmission, minimizing belt slippage, and maximizing the transfer of torque.
2. Diameter:
The diameter of a V pulley affects both its speed ratio and torque transmission capacity. A larger pulley diameter results in higher belt speed and lower torque transmission, while a smaller diameter pulley provides lower speed and higher torque. The selection of the pulley diameter depends on the desired speed and torque requirements of the application.
3. Material:
The material used for constructing the V pulley impacts its durability, strength, and resistance to wear and corrosion. Common materials include cast iron, steel, aluminum, and plastic. The choice of material depends on factors such as the application environment, load capacity, and operating conditions. A robust and appropriate material selection ensures the pulley can withstand the demands of the application and maintain its performance over time.
4. Balance and Runout:
A well-balanced V pulley is essential to minimize vibration and ensure smooth operation. Imbalances can lead to increased wear on the pulley, belt, and bearings, reducing the overall efficiency and lifespan of the system. Similarly, excessive runout (eccentricity) in the pulley’s rotational movement can cause belt misalignment and increased friction. Proper design and manufacturing techniques are necessary to achieve optimal balance and runout in V pulleys.
5. Taper and Flange:
In some V pulley designs, a taper or flange is incorporated to improve belt tracking and prevent belt wandering or jumping off the pulley. The taper or flange helps guide the belt and maintain proper alignment, enhancing the overall performance and reliability of the power transmission system.
6. Hub Design:
The hub design of a V pulley determines its attachment method to the shaft. It can feature keyways, set screws, or other mechanisms to securely fasten the pulley in place. The hub design should ensure a tight and reliable connection to prevent pulley slippage and maintain accurate power transmission.
7. Surface Finish:
The surface finish of a V pulley can impact its friction characteristics. A smooth and properly finished surface reduces friction between the pulley and the belt, promoting efficient power transmission and minimizing heat generation. Additionally, surface treatments such as coatings or platings can improve the pulley’s resistance to corrosion and wear.
Each of these design factors contributes to the overall performance of a V pulley in terms of power transmission efficiency, belt grip, durability, and reliability. Manufacturers carefully consider these design aspects to ensure optimal performance and compatibility with specific applications and operating conditions.
What is the role of V pulleys in HVAC systems and air conditioning units?
V pulleys play a significant role in HVAC (Heating, Ventilation, and Air Conditioning) systems and air conditioning units by facilitating efficient power transmission and driving various components. Here’s a detailed explanation of the role of V pulleys in HVAC systems and air conditioning units:
1. Blower Motor Drive:
In HVAC systems and air conditioning units, V pulleys are commonly used to drive the blower motor. The blower motor is responsible for circulating air through the system, facilitating the movement of conditioned air into the desired space. The V pulley provides the necessary power transmission to drive the blower motor efficiently.
2. Fan Drive:
V pulleys are also employed in HVAC systems to drive fans that assist in airflow and heat exchange. These fans include condenser fans, evaporator fans, and circulation fans. The V pulley connects the motor to the fan, enabling the fan to operate at the desired speed to enhance heat transfer and air circulation.
3. Belt-Driven Compressors:
In some HVAC systems and air conditioning units, V pulleys are used in conjunction with belt-driven compressors. The compressor is responsible for pressurizing and circulating the refrigerant throughout the system, facilitating the cooling process. The V pulley provides power transmission from the motor to the compressor, allowing for efficient operation of the cooling system.
4. Speed Control:
V pulleys allow for speed control in HVAC systems and air conditioning units. By using pulleys of different sizes, the speed ratio between the motor and the driven components can be adjusted. This flexibility in speed control enables precise airflow regulation and cooling capacity adjustment based on the specific requirements of the space being conditioned.
5. Belt Tensioning and Alignment:
Proper tensioning and alignment of the belts are essential for efficient power transmission and to prevent belt slippage or premature wear. V pulleys in HVAC systems are often accompanied by tensioners and idler pulleys that help maintain the correct tension in the belts and ensure proper belt alignment. Proper tensioning and alignment contribute to the overall efficiency and longevity of the system.
6. Noise Reduction:
V pulleys, along with properly tensioned belts, contribute to the smooth and quiet operation of HVAC systems and air conditioning units. The design of V pulleys, combined with the flexibility and smooth engagement of V-belts, minimizes noise generation, providing a quieter environment for occupants.
7. Durability and Maintenance:
V pulleys used in HVAC systems and air conditioning units are typically made of durable materials such as steel or aluminum. These materials can withstand the demanding conditions of HVAC operation, including high temperatures and continuous use. Regular maintenance, including inspection, lubrication, and occasional belt replacement, ensures the continued efficiency and reliability of the V pulley system in HVAC applications.
Overall, V pulleys are integral components in HVAC systems and air conditioning units, enabling efficient power transmission, precise speed control, and reliable operation of blower motors, fans, compressors, and other components. Their design features, combined with properly tensioned belts, contribute to the overall performance, airflow, and cooling capacity of HVAC systems, ensuring optimal comfort and energy efficiency in various indoor environments.
Can you explain the typical applications of V pulleys in machinery?
V pulleys, also known as V-belt pulleys or sheaves, have a wide range of applications across various machinery and systems. Here’s an explanation of the typical applications of V pulleys:
1. Automotive Systems:
V pulleys are extensively used in automotive systems. They are found in engines, where they transmit power from the crankshaft to various accessories such as the alternator, water pump, power steering pump, and air conditioning compressor. V pulleys in automotive applications ensure efficient power transmission and enable the proper functioning of essential vehicle components.
2. Industrial Machinery:
In industrial machinery, V pulleys find widespread use in power transmission systems. They are commonly employed in belt-driven conveyor systems, where they transfer power from electric motors to drive belts that move materials or products along the conveyor lines. V pulleys are also used in various industrial equipment, such as agricultural machinery, machine tools, printing presses, and packaging machines.
3. HVAC Systems:
Heating, ventilation, and air conditioning (HVAC) systems utilize V pulleys for power transmission. V pulleys are employed in fans, blowers, and pumps used in HVAC systems. They enable the efficient operation of these components and contribute to the proper circulation of air or fluids in buildings, ensuring effective heating, cooling, and ventilation.
4. Appliances:
V pulleys are found in a range of household and commercial appliances. They are used in washing machines and dryers to transmit power from electric motors to the drum or agitator. V pulleys are also employed in power tools, such as drills and saws, to transfer rotational motion from the motor to the cutting or drilling mechanism.
5. Mining and Construction Equipment:
In the mining and construction industries, V pulleys are utilized in heavy machinery and equipment. They are commonly found in excavators, bulldozers, cranes, and loaders, where they transmit power to various components such as hydraulic pumps, winches, and conveyor systems. V pulleys in mining and construction equipment play a crucial role in enabling efficient and reliable operation in demanding environments.
6. Agricultural Equipment:
Agricultural machinery extensively employs V pulleys for power transmission. Tractors, combines, harvesters, and other agricultural equipment utilize V pulleys to transfer power to different components, including pumps, augers, conveyors, and cutting mechanisms. V pulleys in agricultural machinery facilitate the efficient performance of farming operations.
These are just a few examples of the typical applications of V pulleys in machinery. Due to their versatility, reliability, and ability to handle high torque, V pulleys are widely utilized in numerous industries and mechanical systems to ensure efficient power transmission and proper functioning of various equipment and machinery.
editor by CX
2024-04-25