Product Description
We supply Clutch release bearing, auto cluch bearing, release bearing, to many customers and get good feedback from customers following are the types which we can produce and supply:
50SCRN31P-1, 48RTC3301, 48RTC3303, 44TKB2805, FCR55-17-9
FCR55-17-11, FCR54/32, FCR50/10, 47TKB3101, 47TKB3102
CBU553524B, F2182862, FBX130B, RCTS31SA, 48TKA3201, PLC04-23, 58TKA3703, 48TKA3214, RCT338SA, RCT38SL1, 35TRK-1,
40TRK39-4SB, 40TRBC07-27B, 40TRK30W2SB, 48TKA3214, 28TAG12
RCT338SA1, RCT45-1S, RCT4075-1S, RCT3360A, TK55-1A1U3, CT70B
TK45-4U3, CT52A-1, 65TNK20, 60TNK20, 45TNK20, RCT45-4S, 053TRBC09-7, 41211, 44011614, 892862M2
986714K1, 986809K2, 986813, 996708K, 996908, CT1310, FCR54-1
BC12S11, 615469A, C28-423, TKS4850K, RCT55B
RCT45-1S, RCT3558ARUS, TK33-1U3, TK55-1BU3
54TKA3501, 50TKA3805, BCA614018, CT24AG
50TKB3504, 50SCRN31P
FCR55-17-11-2, 50SCRN34-10P, 50SCRN31P-4B, 60TKB3506R
RCT337SA3-2, TK55-1A-1, 50SCRN40P4, 68TKB3506
48TKA3214, 48TKA3201, 48TKA3301, 58TKA3703, FCR60-32-14, 62TMK20, FCR47-8-4-2E, FCR62-29-11-2E
TK55-1B, FCR54-46-2-2E, 62TKA3309, 48THA3302A, PU335737ARR14
TK40-4A-40TRK-1, 65TNK20, 50SCRN44P-2AQ, CBU472921C, FCR-15-2A 68TKB3303RA, 60SCRN31-P-6, 47SCRN031-2, 62TKA3311, CBU33731 CBU442822 RCTS338SA1 RCTS338SA2 RCT371SA RCT322SA RCTS28SA RCT356SA9 50SCRN31-P1 RCT401SA RCT37SA1 RCT363SA RCT422SA1 RCTS33SA-1 XLB1016 RCT356SA6 RCTS325SA RCT331SA XLB1571 CBU472921 RCTS31SA RCT432SA RCT40SA RCTS354SA RCT283SA RCTS351SA4 RCT473SA RCT356SA8 RCTS33SA-3 RCT337SA-3 RCT4700SA RCTS338SA-4 RCT40 RCTS4067A2RR RCT38SL1 CT70BL1 CT1310 RCT4075-1S RCT4064S RCT3360A2RRS RCT35-1 RCT3558ARUS RCTS45S RCT52S CT52A-1 65TNK20-1 CT5582UR CT45-1S T-74501 T-16000 T-700 T-W8080 T-25201 T-12120 T-85002
SK:
VKC2051, VKC2064, VKC2080, VKC2091, VKC2108, VKC2111, VKC2144, VKC2115, VKC2169, VKC2181, VKC2185, VKC2189, VKC2191, VKC2168, VKC2193, VKC2195, VKC2205, VKC2215, VKC2216, VKC2238, VKC2240, VKC2241, VKC2243, VKC2248, VKC2260, VKC2516, VKC2520, VKC2523, VKC2535, VKC2536, VKC2548, VKC2601, VKC3500, VKC3502, VKC3504, VKC3505, VKC3506, VKC3507, VKC3508, VKC3509, VKC3511, VKC3513, VKC3514, VKC3515, VKC3516, VKC3519, VKC3525, VKC3695, VKC3520, VKC3521, VKC3523, VKC3524, VKC3526, VKC3527, vkc3537, VKC3538, VKC3540, VKC3541, VKC3543, VKC3545, VKC3546, VKC3548, VKC3551, VKC3553, VKC3554, VKC3555, VKC3556, VKC3558, VKC3559, VKC3560, VKC3562, VKC3564, VKC3565, VKC3567, VKC3568, VKC3569, VKC3574, VKC3575, VKC3577, VKC3578, VKC3579, VKC3581, VKC3584, VKC3588, VKC3592, VKC3598, VKC3600, VKC3602, VKC3606, VKC3607, VKC3609, VKC3610, VKC3611, VKC3612, VKC3613, VKC3615, VKC3616, VKC3617, VKC3619, VKC3620, VKC3621, VKC3622, VKC3623, VKC3625, VKC3626, VKC3628, VKC3631, VKC3643, VKC3645, VKC3647, VCK3649, VKC3650, VKC3661, VKC3675, VKC3616, VKC3666, VKC3668, VKC3672, VKC3674, VKC5045, VKC5052, VKC5071, VKC5206, VKC5212, VKC5215, VKC3654, VKC3659, VKD22414, VKD23360, VKD19939, VKD17238, VKD17245, VKC5006, VKC3699,
NSK:
TK70-1AU3, TK55-1BU3, TK55-1AU3, TK52Z-1C, TK52Z-1B, TK45-4U3, TK45-4BU3, TK40-4AU3, TK40-1B2AK2, TK40-16AU3, TK40-14AU3, CB-1439-C, 68TKB3803RA, 68TKB3506AR, 65TNK20, 62TKA3309U3, 62TKA3303U3, 62TKA3211, 60TMK20U3, 60TKC4202, 60TKB3506R, 60TKB3502R, 60TKA3502U3, 58TKZ371, 58TKA3703B, 55TKA3201, 55TKA3102, 54TKE3602A, 54TKE3601, 54TKB3604, 54TKA3501, 50TKE3304, 50TKE3301, 50TKB3505BR, 24TK308E1U3, 35TMK29C1, 50TKB3504BR, 50TKB3501BR, 50TKA3805, 33TKD03U3, 50TKA3305R, 48TKB3204R, 48TKB3202, 48TKA3301, 48TKA3214, 48TKA3211B, 48TKA3210, 48TKA3201, 35TMK29B2, 47TKB3102B, 47TKB3101, 47TKB3001A, 47TKB2901UN3S, 45TKD07U3, 44TKB2805, 44TKB2803, 40TMK29B1U3,
40TMK20B, 40TKD07U3, 40TMK20-1S, 40TMK29, 52TMK804/2E, 62TMK20-1, 65TNK20, 93TKC6301, CBU442822, CBU472921C, CBU543625E, CBUF483326, CT1310, CT38-1L1, CT45-1S, CT50SA, CT50SA, CT5588ARSE, CT55BL1, CT60BR 5A20, CT70B, 81TKL4801, 68TKZ4401, 44TKB2803.
BOUNDARY DIMENSIONS | KOYO | NSK | NTN | NACHI | DMB | OEM NO. |
62.5×33×31 | 50SCRN31P-1 | 50SCRN31P-1 | 31230-12170 | |||
67×33.6×27.5 | 48RTC3301 | |||||
64×33.3×23 | 48RTC3303 | |||||
57×28.2×33 | RCT282SA | 44TKB2805 | 44TKB2805 | |||
70×31.7×38 | FCR55-17-9 | FCR55-17-9 | ||||
70×31.7×34.5 | FCR55-17-11 | FCR55-17-11 | ||||
70×36.1×38.5 | FCR54-48-3/2E | FCR54/32 | FCR54/32 | |||
65×33.2×40 | RCT331SA | FCR50-10/2E | FCR50/10 | |||
65×31.2×48.5 | 47TKB3101 | 47TKB3101 | 22810-P20-005 | |||
65×31.2×48.5 | 47TKB3102 | 47TKB3102 | ||||
65.2×31.2×39.5 | CBU553524B | CBU553524B | ||||
62×29.2×34.5 | F2182862 | |||||
56×24.6×30 | FBX130B | |||||
65×31.1×34.5 | RCTS31SA | 55TKA3102 | X10-FCR55-5/2E | RCTS31SA | 22810-PL8-921 | |
70×31.8×33.2 | RCT322SA | 48TKA3201 | FCR45-11/2E | 48SCRN32K | 48TKA3201 | MD706180 |
60×25.8×23 | PLC04-23 | |||||
74×37.1×41.5 | RCT47SA1 | 58TKA3703 | 58TKA3703 | ME657110 | ||
66.5×37×20.7 | 48TKA3214 | 48TKA3214 | 8-94101-243-0 | |||
RCT338SA | 23265-70C00 |
EMAIL ME NOW FOR MORE PHOTOS AND INTRODUCTION !
Warranty: | 1 Year |
---|---|
Type: | Auto Clutch Bearing |
Material: | Chrome Steel |
Tolerance: | P6 |
Certification: | ISO9001, ISO9006, QS9000, SGS |
Clearance: | C2 |
Samples: |
US$ 6/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How does the design of a V pulley affect its performance?
The design of a V pulley plays a crucial role in determining its performance characteristics. Here’s an explanation of how different design aspects of a V pulley can affect its performance:
1. Groove Profile:
The groove profile of a V pulley is designed to match the shape of the V-belt used in the power transmission system. The angle and depth of the groove directly influence the grip between the pulley and the belt. An appropriate groove profile ensures a secure and efficient power transmission, minimizing belt slippage, and maximizing the transfer of torque.
2. Diameter:
The diameter of a V pulley affects both its speed ratio and torque transmission capacity. A larger pulley diameter results in higher belt speed and lower torque transmission, while a smaller diameter pulley provides lower speed and higher torque. The selection of the pulley diameter depends on the desired speed and torque requirements of the application.
3. Material:
The material used for constructing the V pulley impacts its durability, strength, and resistance to wear and corrosion. Common materials include cast iron, steel, aluminum, and plastic. The choice of material depends on factors such as the application environment, load capacity, and operating conditions. A robust and appropriate material selection ensures the pulley can withstand the demands of the application and maintain its performance over time.
4. Balance and Runout:
A well-balanced V pulley is essential to minimize vibration and ensure smooth operation. Imbalances can lead to increased wear on the pulley, belt, and bearings, reducing the overall efficiency and lifespan of the system. Similarly, excessive runout (eccentricity) in the pulley’s rotational movement can cause belt misalignment and increased friction. Proper design and manufacturing techniques are necessary to achieve optimal balance and runout in V pulleys.
5. Taper and Flange:
In some V pulley designs, a taper or flange is incorporated to improve belt tracking and prevent belt wandering or jumping off the pulley. The taper or flange helps guide the belt and maintain proper alignment, enhancing the overall performance and reliability of the power transmission system.
6. Hub Design:
The hub design of a V pulley determines its attachment method to the shaft. It can feature keyways, set screws, or other mechanisms to securely fasten the pulley in place. The hub design should ensure a tight and reliable connection to prevent pulley slippage and maintain accurate power transmission.
7. Surface Finish:
The surface finish of a V pulley can impact its friction characteristics. A smooth and properly finished surface reduces friction between the pulley and the belt, promoting efficient power transmission and minimizing heat generation. Additionally, surface treatments such as coatings or platings can improve the pulley’s resistance to corrosion and wear.
Each of these design factors contributes to the overall performance of a V pulley in terms of power transmission efficiency, belt grip, durability, and reliability. Manufacturers carefully consider these design aspects to ensure optimal performance and compatibility with specific applications and operating conditions.
Can V pulleys be part of fitness equipment like treadmills and stationary bikes?
Yes, V pulleys can be part of fitness equipment like treadmills and stationary bikes, playing a crucial role in their operation. Here’s a detailed explanation:
1. Belt Driven Systems:
Treadmills and stationary bikes often use belt-driven systems to transfer power from the motor or user’s pedaling motion to the moving components of the equipment. V pulleys are an integral part of these systems as they provide the necessary power transmission and control.
2. Motor Drive:
In motorized treadmills and stationary bikes, the V pulley is connected to the motor shaft, which drives the belt. The motor provides the rotational power needed to move the belt, allowing the user to walk, jog, or run on the treadmill or pedal the stationary bike. The size and design of the V pulley influence the speed and torque delivered to the belt and, consequently, the user’s movement.
3. Tension and Belt Alignment:
Proper tensioning and alignment of the belt are crucial for smooth and efficient power transfer in fitness equipment. V pulleys are often accompanied by tensioners and idler pulleys that help maintain the correct tension in the belt and ensure proper belt alignment. This ensures optimal performance and prevents belt slippage or premature wear.
4. Speed Control:
V pulleys allow for speed control in treadmills and stationary bikes. By using pulleys of different sizes, the speed ratio between the motor or user’s pedaling motion and the belt can be adjusted. This enables users to select their desired workout intensity by adjusting the speed at which the belt moves or the resistance level on stationary bikes.
5. Quiet Operation:
The design of V pulleys, combined with the flexibility and smooth engagement of V-belts, contributes to the quiet operation of fitness equipment. The pulley and belt system minimizes noise generation, providing a more enjoyable and peaceful workout experience for users.
6. Durability and Maintenance:
V pulleys used in fitness equipment are designed to withstand the demanding conditions of regular use. They are often made of durable materials such as steel or aluminum to ensure longevity. Regular maintenance, including periodic inspection, lubrication, and occasional belt replacement, is necessary to maintain the efficiency and reliability of the V pulley system in fitness equipment.
Overall, V pulleys are an essential component of fitness equipment like treadmills and stationary bikes, facilitating efficient power transmission, speed control, and user movement. Their design features, combined with properly tensioned belts, contribute to the overall performance, durability, and quiet operation of fitness equipment, supporting users in achieving their fitness goals.
What is a V pulley, and how does it function in mechanical systems?
A V pulley, also known as a V-belt pulley or a sheave, is a mechanical component used in power transmission systems. Here’s an explanation of what a V pulley is and how it functions:
A V pulley is a pulley with a V-shaped groove on its outer circumference. It is typically made of metal, such as cast iron or steel, and is designed to work in conjunction with V-belts, which are flexible rubber belts with a trapezoidal cross-section. The V pulley and V-belt combination form a friction-based power transmission system.
Function:
The primary function of a V pulley is to transmit power between a driving source, such as an electric motor or an engine, and a driven component, such as a pump, a generator, or a machine. The V-belt wraps around the V pulley, fitting into the groove, and forms a frictional contact. When the driving source rotates the V pulley, the friction between the V-belt and the pulley enables the transfer of rotational motion and torque to the driven component.
Advantages:
1. Slip Reduction: The V-shaped groove on the pulley and the corresponding shape of the V-belt create a wedging action that enhances the grip between the pulley and the belt. This reduces the likelihood of slippage, even under heavy loads or during sudden changes in speed or direction.
2. High Torque Transmission: The design of the V pulley allows for the transmission of high levels of torque. The wedging action and increased contact area between the pulley and the belt enable efficient power transfer without excessive belt tension.
3. Speed Variation: By changing the diameter of the V pulley, different speed ratios can be achieved in the power transmission system. This provides flexibility in adjusting the speed of the driven component relative to the driving source, allowing for proper matching of operational requirements.
4. Damping Effect: The flexibility of the V-belt and the slight elasticity of the rubber material provide a damping effect, which helps mitigate vibrations and shocks in the mechanical system. This contributes to smoother operation, reduced noise, and increased component longevity.
5. Ease of Installation and Maintenance: V pulleys are relatively easy to install and maintain. The V-belts can be easily tensioned or replaced when necessary, and the pulleys can be readily mounted on shafts or bearings using standard mounting techniques.
Applications:
V pulleys find widespread use in various mechanical systems, including:
- Automotive applications, such as in engines, water pumps, and air conditioning compressors.
- Industrial machinery, such as conveyor systems, agricultural equipment, and machine tools.
- HVAC systems, where V pulleys are used in fans, blowers, and pumps.
- Power transmission systems in appliances, such as washing machines, dryers, and power tools.
By utilizing V pulleys in mechanical systems, efficient and reliable power transmission can be achieved, enabling the smooth operation of various devices and equipment.
editor by CX
2023-10-07